Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.916
1.
Biochem J ; 481(8): 569-585, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38563463

Homocystinuria is a rare disease caused by mutations in the CBS gene that results in a deficiency of cystathionine ß-synthase (CBS). CBS is an essential pyridoxal 5'-phosphate (PLP)-dependent enzyme in the transsulfuration pathway, responsible for combining serine with homocysteine to produce cystathionine, whose activity is enhanced by the allosteric regulator S-adenosylmethionine (SAM). CBS also plays a role in generating hydrogen sulfide (H2S), a gaseous signaling molecule with diverse regulatory functions within the vascular, nervous, and immune systems. In this study, we present the clinical and biochemical characterization of two novel CBS missense mutations that do not respond to pyridoxine treatment, namely c.689T > A (L230Q) and 215A > T (K72I), identified in a Chinese patient. We observed that the disease-associated K72I genetic variant had no apparent effects on the spectroscopic and catalytic properties of the full-length enzyme. In contrast, the L230Q variant expressed in Escherichia coli did not fully retain heme and when compared with the wild-type enzyme, it exhibited more significant impairments in both the canonical cystathionine-synthesis and the alternative H2S-producing reactions. This reduced activity is consistent with both in vitro and in silico evidence, which indicates that the L230Q mutation significantly decreases the overall protein's stability, which in turn, may represent the underlying cause of its pathogenicity.


Cystathionine beta-Synthase , Homocystinuria , Mutation, Missense , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/chemistry , Cystathionine beta-Synthase/metabolism , Homocystinuria/genetics , Homocystinuria/metabolism , Homocystinuria/enzymology , Humans , Male , Female
2.
Zhonghua Er Ke Za Zhi ; 62(4): 357-362, 2024 Mar 25.
Article Zh | MEDLINE | ID: mdl-38527507

Objective: To explore the diagnosis and treatment of adolescence-onset methylenetetrahydrofolate reductase (MTHFR) deficiency. Methods: This was a retrospective case study. Nine patients with adolescence-onset MTHFR deficiency were diagnosed at Peking University First Hospital from January 2016 to December 2022, and followed up for more than 1 year. Their general information, clinical manifestations, laboratory tests, cranial images, MTHFR gene variants, diagnosis, treatment, and outcome were analyzed retrospectively. Results: The 9 patients came from 8 families. They had symptoms at age of 8.0 years to 17.0 years and diagnosed at 9.0 years to 17.5 years. Eight were male and 1 was female. Two patients were brothers, the elder brother developed abnormal gait at 17.0 years; and the younger brother was then diagnosed at 15.0 years of age and treated at the asymptomatic stage, who was 18.0 years old with normal condition during this study. The main manifestations of the 8 symptomatic patients included progressive dyskinesia and spastic paralysis of the lower limbs, with or without intellectual decline, cognitive impairment and behavioral abnormalities. Totally, 15 variants of MTHFR gene were identified in the 9 patients, including 8 novel variants. Five patients had brain image abnormalities. Increased plasma total homocysteine level (65-221 µmol/L) was found in all patients, and decreased to 20-70 µmol/L after treatment with betaine and calcium folinate. Besides, the 8 symptomatic patients had their behavior and cognitive problems significantly improved, with a legacy of lower limb motor disorders. Conclusions: Late-onset MTHFR deficiency can occur in adolescence. The diagnosis is usually delayed because of non-specific clinical symptoms. The test of blood total homocysteine could be used as a selective screening test. Eight novel varients of MTHFR gene were identified. Timely treatment can improve clinical condition significantly, and pre-symptomatic treatment may prevent brain damage.


Methylenetetrahydrofolate Reductase (NADPH2) , Muscle Spasticity , Adolescent , Child , Female , Humans , Male , Homocysteine/therapeutic use , Homocystinuria , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/deficiency , Muscle Spasticity/diagnosis , Muscle Spasticity/genetics , Muscle Spasticity/drug therapy , Psychotic Disorders , Retrospective Studies
3.
Cell Host Microbe ; 32(3): 298-300, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38484708

Pyridoxine-unresponsive homocystinuria has lifelong implications for health. In this issue, Perreault and colleagues present evidence that orally delivered engineered probiotic Escherichia Coli Nissle SYNB1353 is a promising candidate in reducing homocysteine, with successful trials in mice, monkeys, and humans. However, further probiotic optimization and safety assessments are required.


Homocystinuria , Probiotics , Mice , Humans , Animals , Homocystinuria/genetics , Homocystinuria/therapy , Escherichia coli/genetics , Probiotics/therapeutic use , Pyridoxine , Homocysteine
4.
Cell Host Microbe ; 32(3): 382-395.e10, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38309259

Methionine is an essential proteinogenic amino acid, but its excess can lead to deleterious effects. Inborn errors of methionine metabolism resulting from loss of function in cystathionine ß-synthase (CBS) cause classic homocystinuria (HCU), which is managed by a methionine-restricted diet. Synthetic biotics are gastrointestinal tract-targeted live biotherapeutics that can be engineered to replicate the benefits of dietary restriction. In this study, we assess whether SYNB1353, an E. coli Nissle 1917 derivative, impacts circulating methionine and homocysteine levels in animals and healthy volunteers. In both mice and nonhuman primates (NHPs), SYNB1353 blunts the appearance of plasma methionine and plasma homocysteine in response to an oral methionine load. A phase 1 clinical study conducted in healthy volunteers subjected to an oral methionine challenge demonstrates that SYNB1353 is well tolerated and blunts plasma methionine by 26%. Overall, SYNB1353 represents a promising approach for methionine reduction with potential utility for the treatment of HCU.


Homocystinuria , Methionine , Humans , Mice , Animals , Methionine/metabolism , Methionine/therapeutic use , Healthy Volunteers , Escherichia coli/genetics , Escherichia coli/metabolism , Disease Models, Animal , Homocystinuria/drug therapy , Homocystinuria/metabolism , Racemethionine , Homocysteine/therapeutic use
5.
Mol Genet Metab ; 142(1): 108345, 2024 May.
Article En | MEDLINE | ID: mdl-38387306

Mutations in MMACHC cause cobalamin C disease (cblC, OMIM 277400), the commonest inborn error of vitamin B12 metabolism. In cblC, deficient activation of cobalamin results in methylcobalamin and adenosylcobalamin deficiency, elevating methylmalonic acid (MMA) and total plasma homocysteine (tHcy). We retrospectively reviewed the medical files of seven cblC patients: three compound heterozygotes for the MMACHC (NM_015506.3) missense variant c.158T>C p.(Leu53Pro) in trans with the common pathogenic mutation c.271dupA (p.(Arg91Lysfs*14), "compounds"), and four c.271dupA homozygotes ("homozygotes"). Compounds receiving hydroxocobalamin intramuscular injection monotherapy had age-appropriate psychomotor performance and normal ophthalmological examinations. In contrast, c.271dupA homozygotes showed marked psychomotor retardation, retinopathy and feeding problems despite penta-therapy (hydroxocobalamin, betaine, folinic acid, l-carnitine and acetylsalicylic acid). Pretreatment levels of plasma and urine MMA and tHcy were higher in c.271dupA homozygotes than in compounds. Under treatment, levels of the compounds approached or entered the reference range but not those of c.271dupA homozygotes (tHcy: compounds 9.8-32.9 µM, homozygotes 41.6-106.8 (normal (N) < 14); plasma MMA: compounds 0.14-0.81 µM, homozygotes, 10.4-61 (N < 0.4); urine MMA: compounds 1.75-48 mmol/mol creatinine, homozygotes 143-493 (N < 10)). Patient skin fibroblasts all had low cobalamin uptake, but this was milder in compound cells. Also, the distribution pattern of cobalamin species was qualitatively different between cells from compounds and from homozygotes. Compared to the classic cblC phenotype presented by c.271dupA homozygous patients, c.[158T>C];[271dupA] compounds had mild clinical and biochemical phenotypes and responded strikingly to hydroxocobalamin monotherapy.


Carrier Proteins , Hydroxocobalamin , Phenotype , Vitamin B 12 Deficiency , Vitamin B 12 , Humans , Hydroxocobalamin/administration & dosage , Hydroxocobalamin/therapeutic use , Male , Female , Vitamin B 12 Deficiency/genetics , Vitamin B 12 Deficiency/drug therapy , Vitamin B 12 Deficiency/blood , Vitamin B 12/blood , Child, Preschool , Carrier Proteins/genetics , Retrospective Studies , Oxidoreductases/genetics , Child , Methylmalonic Acid/blood , Homocystinuria/drug therapy , Homocystinuria/genetics , Infant , Mutation, Missense , Homozygote , Heterozygote , Homocysteine/blood , Adolescent , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/drug therapy , Amino Acid Metabolism, Inborn Errors/blood , Adult
6.
Clin Lab ; 70(2)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38345966

BACKGROUND: Based on research, c.609G>A (p.W203X) is a universal mutation site for MMACHC in methylmalonic acidemia (MMA) combined with homocystinuria, cblC type (cblC disease), and c.467G>A (p.G156D) mutation in families with such disease have not yet been reported. To conduct clinical and molecular genetic analysis of a family with cblC disease. METHODS: This work followed the Declaration of Helsinki. All testing methods were performed under the informed consent of our children patients' parents. A second-generation cblC family with 5 members, was selected as the research subject, including sick siblings and parents and an older sister with normal phenotype, given newborn screening for acylcarnitine spectrum via liquid chromatography tandem mass spectrometry (LC-MS/MS), and diagnosed through combining urine organic acid with homocysteine detection via gas chromatography-mass spectrometry (GC-MS) with second-generation gene sequencing technology. The peripheral blood of five family members was collected for genomic DNA extraction, and the changes were screened in disease-related MMACHC sequence via PCR and direct DNA sequencing. RESULTS: The family conformed to the autosomal recessive inheritance, the proband and younger sister were cblC patients, diagnosed in February and at 22d given relevant treatment. The proband died, whereas the younger sister received follow-up treatment. Their parents and sister had normal phenotype. In 2 cases, there was compound heterozygous mutation in MMACHC called c.609G>A (p.W203X) nonsense mutation and c.467G>A (p.G156D) missense mutation in exon 4, while the father with normal phenotype had heterozygous mutation c.609G>A in exon 4 coding area. In its protein, the 203rd amino acid changed from tryptophan to a stop codon (p.W203 x). The normal mother and sister had a heterozygous mutation c.467G>A in exon 4 coding area. In its protein, the 156th amino acid changed from glycine to aspartic acid (p.G156D). CONCLUSIONS: The cblC family results from c.609G>A (p.W203X) and c.467G>A (p.G156D) compound heterozygous mutations in MMACHC, which has a pathogenic impact.


Amino Acid Metabolism, Inborn Errors , Homocystinuria , Infant, Newborn , Child , Humans , Homocystinuria/complications , Homocystinuria/diagnosis , Homocystinuria/genetics , Chromatography, Liquid , Tandem Mass Spectrometry , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Mutation , Amino Acids , Molecular Biology , Vitamin B 12 , Methylmalonic Acid , Oxidoreductases
9.
Orphanet J Rare Dis ; 19(1): 20, 2024 Jan 20.
Article En | MEDLINE | ID: mdl-38245797

INTRODUCTION: Combined methylmalonic acidemia and homocystinuria, cblC type is an inborn error of intracellular cobalamin metabolism and the most common one. The age of onset ranges from prenatal to adult. The disease is characterised by an elevation of methylmalonic acid (MMA) and homocysteine and a decreased production of methionine. The aim is to review existing scientific literature of all late onset cblC patients in terms of clinical symptoms, diagnosis, and outcome. METHODS: A bibliographic database search was undertaken in PubMed (MEDLINE) complemented by a reference list search. We combined search terms regarding cblC disease and late onset. Two review authors performed the study selection, data extraction and quality assessment. RESULTS: Of the sixty-five articles included in this systematic review, we collected a total of 199 patients. The most frequent clinical symptoms were neuropathy/myelopathy, encephalopathy, psychiatric symptoms, thrombotic microangiopathy, seizures, kidney disease, mild to severe pulmonary hypertension with heart failure and thrombotic phenomena. There were different forms of supplementation used in the different studies collected and, within these studies, some patients received several treatments sequentially and/or concomitantly. The general outcome was: 64 patients recovered, 78 patients improved, 4 patients did not improve, or the disease progressed, and 12 patients died. CONCLUSIONS: Most scientific literature regarding the late onset cblC disease comes from case reports and case series. In most cases treatment initiation led to an improvement and even recovery of some patients. The lack of complete recovery underlines the necessity for increased vigilance in unclear clinical symptoms for cblC disease.


Amino Acid Metabolism, Inborn Errors , Homocystinuria , Hyperhomocysteinemia , Adult , Female , Pregnancy , Humans , Amino Acid Metabolism, Inborn Errors/diagnosis , Homocystinuria/diagnosis , Methylmalonic Acid , Vitamin B 12/metabolism
11.
Mol Cell Biol ; 43(12): 664-674, 2023.
Article En | MEDLINE | ID: mdl-38051092

Homocystinuria (HCU), an inherited metabolic disorder caused by lack of cystathionine beta-synthase (CBS) activity, is chiefly caused by misfolding of single amino acid residue missense pathogenic variants. Previous studies showed that chemical, pharmacological chaperones or proteasome inhibitors could rescue function of multiple pathogenic CBS variants; however, the underlying mechanisms remain poorly understood. Using Chinese hamster DON fibroblasts devoid of CBS and stably overexpressing human WT or mutant CBS, we showed that expression of pathogenic CBS variant mostly dysregulates gene expression of small heat shock proteins HSPB3 and HSPB8 and members of HSP40 family. Endoplasmic reticulum stress sensor BiP was found upregulated with CBS I278T variant associated with proteasomes suggesting proteotoxic stress and degradation of misfolded CBS. Co-expression of the main effector HSP70 or master regulator HSF1 rescued steady-state levels of CBS I278T and R125Q variants with partial functional rescue of the latter. Pharmacological proteostasis modulators partially rescued expression and activity of CBS R125Q likely due to reduced proteotoxic stress as indicated by decreased BiP levels and promotion of refolding as indicated by induction of HSP70. In conclusion, targeted manipulation of cellular proteostasis may represent a viable therapeutic approach for the permissive pathogenic CBS variants causing HCU.


Cystathionine beta-Synthase , Homocystinuria , Humans , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/chemistry , Cystathionine beta-Synthase/metabolism , Homocystinuria/drug therapy , Homocystinuria/genetics , Homocystinuria/metabolism , Cystathionine/metabolism , Cystathionine/therapeutic use , Proteostasis , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism
12.
J Biol Chem ; 299(12): 105449, 2023 Dec.
Article En | MEDLINE | ID: mdl-37949228

Cystathionine ß-synthase (CBS) catalyzes the committing step in the transsulfuration pathway, which is important for clearing homocysteine and furnishing cysteine. The transsulfuration pathway also generates H2S, a signaling molecule. CBS is a modular protein with a heme and pyridoxal phosphate-binding catalytic core, which is separated by a linker region from the C-terminal regulatory domain that binds S-adenosylmethionine (AdoMet), an allosteric activator. Recent cryo-EM structures reveal that CBS exists in a fibrillar form and undergoes a dramatic architectural rearrangement between the basal and AdoMet-bound states. CBS is the single most common locus of mutations associated with homocystinuria, and, in this study, we have characterized three clinical variants (K384E/N and M391I), which reside in the linker region. The native fibrillar form is destabilized in the variants, and differences in their limited proteolytic fingerprints also reveal conformational alterations. The crystal structure of the truncated K384N variant, lacking the regulatory domain, reveals that the overall fold of the catalytic core is unperturbed. M391I CBS exhibits a modest (1.4-fold) decrease while the K384E/N variants exhibit a significant (∼8-fold) decrease in basal activity, which is either unresponsive to or inhibited by AdoMet. Pre-steady state kinetic analyses reveal that the K384E/N substitutions exhibit pleiotropic effects and that the differences between them are expressed in the second half reaction, that is, homocysteine binding and reaction with the aminoacrylate intermediate. Together, these studies point to an important role for the linker in stabilizing the higher-order oligomeric structure of CBS and enabling AdoMet-dependent regulation.


Cystathionine beta-Synthase , Mutation , Humans , Allosteric Regulation/genetics , Crystallography, X-Ray , Cystathionine beta-Synthase/chemistry , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Homocysteine/metabolism , Homocystinuria/enzymology , Homocystinuria/genetics , Kinetics , S-Adenosylmethionine/metabolism , Protein Conformation , Catalytic Domain
13.
Dis Model Mech ; 16(11)2023 Nov 01.
Article En | MEDLINE | ID: mdl-37994477

Amino acids are organic molecules that serve as basic substrates for protein synthesis and have additional key roles in a diverse array of cellular functions, including cell signaling, gene expression, energy production and molecular biosynthesis. Genetic defects in the synthesis, catabolism or transport of amino acids underlie a diverse class of diseases known as inborn errors of amino acid metabolism. Individually, these disorders are rare, but collectively, they represent an important group of potentially treatable disorders. In this Clinical Puzzle, we discuss the pathophysiology, clinical features and management of three disorders that showcase the diverse clinical presentations of disorders of amino acid metabolism: phenylketonuria, lysinuric protein intolerance and homocystinuria due to cystathionine ß-synthase (CBS) deficiency. Understanding the biochemical perturbations caused by defects in amino acid metabolism will contribute to ongoing development of diagnostic and management strategies aimed at improving the morbidity and mortality associated with this diverse group of disorders.


Amino Acid Metabolism, Inborn Errors , Homocystinuria , Humans , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/diagnosis , Homocystinuria/drug therapy , Amino Acids
14.
Orphanet J Rare Dis ; 18(1): 306, 2023 09 28.
Article En | MEDLINE | ID: mdl-37770946

BACKGROUND: cblC defect is the most common type of methylmalonic acidemia in China. Patients with late-onset form (>1 year) are often misdiagnosed due to heterogeneous symptoms. This study aimed to describe clinical characteristics and evaluate long-term outcomes of Chinese patients with late-onset cblC defect. METHODS: A total of 85 patients with late-onset cblC defect were enrolled. Clinical data, including manifestations, metabolites, molecular diagnosis, treatment and outcome, were summarized and analyzed. RESULTS: The age of onset ranged from 2 to 32.8 years old (median age 8.6 years, mean age 9.4 years). The time between first symptoms and diagnosis ranged from a few days to 20 years (median time 2 months, mean time 20.7 months). Neuropsychiatric symptoms were presented as first symptoms in 68.2% of cases, which were observed frequently in schoolchildren or adolescents. Renal involvement and cardiovascular disease were observed in 20% and 8.2% of cases, respectively, which occurred with the highest prevalence in preschool children. Besides the initial symptoms, the disease progressed in most patients and cognitive decline became the most frequent symptom overall. The levels of propionylcarnitine, propionylcarnitine / acetylcarnitine ratio, methylmalonic acid, methylcitric acid and homocysteine, were decreased remarkably after treatment (P<0.001). Twenty-four different mutations of MMACHC were identified in 78 patients, two of which were novel. The c.482G>A variant was the most frequent mutated allele in this cohort (25%). Except for 16 patients who recovered completely, the remaining patients were still left with varying degrees of sequelae in a long-term follow-up. The available data from 76 cases were analyzed by univariate analysis and multivariate logistic regression analysis, and the results showed that the time from onset to diagnosis (OR = 1.025, P = 0. 024) was independent risk factors for poor outcomes. CONCLUSIONS: The diagnosis of late-onset cblC defect is often delayed due to poor awareness of its various and nonspecific symptoms, thus having an adverse effect on the prognosis. It should be considered in patients with unexplained neuropsychiatric and other conditions such as renal involvement, cardiovascular diseases or even multiple organ damage. The c.482G>A variant shows the highest frequency in these patients. Prompt treatment appears to be beneficial.


Amino Acid Metabolism, Inborn Errors , Homocystinuria , Adolescent , Child, Preschool , Humans , Child , Young Adult , Adult , Homocystinuria/diagnosis , Oxidoreductases/genetics , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Carnitine , Mutation/genetics , Methylmalonic Acid , Vitamin B 12
15.
J Inherit Metab Dis ; 46(6): 1206-1208, 2023 11.
Article En | MEDLINE | ID: mdl-37718464

Classical homocystinuria is caused by pathogenic variants in the CBS gene leading to a deficiency of the vitamin B6-dependent enzyme cystathionine beta synthase. The disease is typically associated with high blood homocysteine concentrations. Clinical features include developmental delay/intellectual disability, psychiatric problems, thromboembolism, lens dislocation, and marfanoid habitus. We report on a child with classical homocystinuria presenting with acute episodes of dystonia and symmetrical basal ganglia abnormalities mimicking a mitochondrial disease. After starting treatment with vitamin B6, homocysteine levels rapidly normalized and dystonic episodes did not re-occur. Moreover, brain-imaging findings almost completely disappeared. The case illustrates that homocystinuria should be considered as a treatable differential diagnosis of dystonia.


Dystonia , Dystonic Disorders , Homocystinuria , Child , Humans , Homocystinuria/complications , Homocystinuria/diagnosis , Homocystinuria/genetics , Dystonia/diagnosis , Dystonia/etiology , Cystathionine beta-Synthase , Pyridoxine/therapeutic use , Vitamin B 6/therapeutic use , Homocysteine
16.
Mol Genet Metab ; 140(3): 107681, 2023 11.
Article En | MEDLINE | ID: mdl-37604084

In early-onset (EO) cblC deficiency (MMACHC), hydroxocobalamin dose-intensification (OHCBL-DI) improved biochemical and clinical outcome. In mammals, Cobalamin is reduced, in a reaction mediated by MMACHC. Pathogenic variants in MMACHC disrupt the synthesis pathway of methyl-cobalamin (MetCbl) and 5'-deoxy-adenosyl-cobalamin (AdoCbl), cofactors for both methionine synthase (MS) and methyl-malonyl-CoA mutase (MCM) enzymes. In 5 patients (pts.), with EO cblC deficiency, biochemical and clinical responses were studied following OHCbl-DI (mean ± SD 6,5 ± 3,3 mg/kg/day), given early, before age 5 months (pts. 1, 2, 3 and 4) or lately, at age 5 years (pt. 5). In all pts., total homocysteine (tHcy), methyl-malonic acid (MMA) and Cob(III)alamin levels were measured. Follow-up was performed during 74/12 years (pts. 1, 2, 3), 33/12 years (pt. 4) and 34/12 years (pt. 5). OHCbl was delivered intravenously or subcutaneously. Mean ± SD serum Cob(III)alamin levels were 42,2 × 106 ± 28, 0 × 106 pg/ml (normal: 200-900 pg/ml). In all pts., biomarkers were well controlled. All pts., except pt. 5, who had poor vision, had central vision, mild to moderate nystagmus, and with peri-foveolar irregularity in pts. 1, 2 and 4, yet none had the classic bulls' eye maculopathy and retinal degeneration characteristic of pts. with EO cblC deficiency. Only pt. 5, had severe cognitive deficiency. Both visual and cognitive functions were better preserved with early than with late OHCBL-DI. OHCBL-DI is suggested to bypass MMACHC, subsequently to be rescued by methionine synthase reductase (MSR) and adenosyl-transferase (ATR) to obtain Cob(I)alamin resulting in improved cognitive and retinal function in pts. with EO cblC deficiency.


Cognitive Dysfunction , Homocystinuria , Macular Degeneration , Vitamin B 12 Deficiency , Child, Preschool , Humans , Infant , Male , Cognitive Dysfunction/drug therapy , Homocystinuria/drug therapy , Homocystinuria/genetics , Hydroxocobalamin/therapeutic use , Macular Degeneration/drug therapy , Mammals , Oxidoreductases , Vitamin B 12/metabolism , Vitamin B 12 Deficiency/drug therapy
17.
Nutrients ; 15(15)2023 Jul 28.
Article En | MEDLINE | ID: mdl-37571294

Newborn screening (NBS) programs are effective measures of secondary prevention and have been successively extended. We aimed to evaluate NBS for methylmalonic acidurias, propionic acidemia, homocystinuria, remethylation disorders and neonatal vitamin B12 deficiency, and report on the identification of cofactor-responsive disease variants. This evaluation of the previously established combined multiple-tier NBS algorithm is part of the prospective pilot study "NGS2025" from August 2016 to September 2022. In 548,707 newborns, the combined algorithm was applied and led to positive NBS results in 458 of them. Overall, 166 newborns (prevalence 1: 3305) were confirmed (positive predictive value: 0.36); specifically, methylmalonic acidurias (N = 5), propionic acidemia (N = 4), remethylation disorders (N = 4), cystathionine beta-synthase (CBS) deficiency (N = 1) and neonatal vitamin B12 deficiency (N = 153). The majority of the identified newborns were asymptomatic at the time of the first NBS report (total: 161/166, inherited metabolic diseases: 9/14, vitamin B12 deficiency: 153/153). Three individuals were cofactor-responsive (methylmalonic acidurias: 2, CBS deficiency: 1), and could be treated by vitamin B12, vitamin B6 respectively, only. In conclusion, the combined NBS algorithm is technically feasible, allows the identification of attenuated and severe disease courses and can be considered to be evaluated for inclusion in national NBS panels.


Homocystinuria , Propionic Acidemia , Vitamin B 12 Deficiency , Humans , Infant, Newborn , Homocystinuria/diagnosis , Prospective Studies , Neonatal Screening/methods , Pilot Projects , Vitamin B 12 , Vitamin B 12 Deficiency/diagnosis , Phenotype , Methylmalonic Acid/metabolism , Vitamins
18.
Nutrients ; 15(14)2023 Jul 11.
Article En | MEDLINE | ID: mdl-37513523

The main treatment for pyridoxine-nonresponsive cystathionine-ß-synthase deficiency is a strict diet. Most centers prescribe low-protein diets based on gram-protein exchanges, and all protein sources are weighed. The purpose of this study is to investigate the effects of a more liberal methionine (Met)-based diet with relaxed consumption of fruits and vegetables on metabolic outcomes and dietary adherence. Ten patients previously on a low-protein diet based on a gram-protein exchange list were enrolled. The natural protein exchange lists were switched to a "Met portion exchange list". Foods containing less than 0.005 g methionine per 100 g of the food were accepted as exchange-free foods. The switch to Met portioning had no adverse effects on the control of plasma homocysteine levels in terms of metabolic outcomes. It resulted in a significant reduction in patients' daily betaine dose. All patients preferred to continue with this modality. In conclusion, methionine-portion-based medical nutrition therapy with relaxed consumption of fruits and vegetables seems to be a good and safe option to achieve good metabolic outcomes and high treatment adherence.


Homocystinuria , Methionine , Humans , Methionine/metabolism , Pyridoxine , Vegetables/metabolism , Cystathionine , Fruit/metabolism , Cystathionine beta-Synthase/therapeutic use , Racemethionine , Diet, Protein-Restricted , Homocysteine
19.
J Pediatr Endocrinol Metab ; 36(8): 761-771, 2023 Aug 28.
Article En | MEDLINE | ID: mdl-37440674

OBJECTIVES: To study the biochemical, clinical and molecular characteristics of 5,10- methylenetetrahydrofolate reductase (MTHFR) deficiency in Pakistani patients from a single center. METHODS: Medical charts, urine organic acid chromatograms, plasma methionine and Hcys levels, and molecular testing results of MTHFR gene of patients presenting at the Biochemical Genetics Clinic, AKUH from 2016 to 2022 were reviewed. RESULTS: Neonatal MTHFR deficiency was found in five patients. The median (IQR) age of symptom onset and diagnosis were 18 (8.5-22) and 26 (16.5-31) days. The median lag between symptom onset and diagnosis was 8 (4.5-12.5) days. The median age of treatment initiation and duration of treatment were 26 (16.5-49) and 32 (25.5-54) days. The most common clinical features were lethargy, poor feeding, and seizures. The MTHFR gene sequencing revealed homozygous variants p.K510K, p.R567*, and p.R157W. Renal insufficiency manifesting as elevated serum creatinine and responding to betaine therapy was noted in one patient. This has not been previously reported in neonatal MTHFR deficiency and may reflect engagement of alternate pathways of remethylation. Adult onset MTHFR deficiency was found in six patients, with a heterogeneous neurological presentation. The median lag between symptoms onset and diagnosis was 7 (3-11) years. MTHFR gene sequencing revealed homozygous variant p.A195V in five patients from one family and p.G261V in the other. Two of the five reported variants are novel that include p.R157W and p.G261V. CONCLUSIONS: Eleven patients of this rare disorder from a single center indicate the need for clinical awareness and appropriate biochemical evaluation to ensure optimal outcomes.


Homocystinuria , Psychotic Disorders , Adult , Humans , Homocystinuria/diagnosis , Homocystinuria/genetics , Homocystinuria/drug therapy , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Pakistan , Psychotic Disorders/diagnosis , Psychotic Disorders/drug therapy , Psychotic Disorders/genetics
20.
Mol Genet Metab ; 139(4): 107653, 2023 08.
Article En | MEDLINE | ID: mdl-37463544

Classical homocystinuria (HCU) is a rare inborn error of amino acid metabolism characterized by accumulation of homocysteine, an intermediate product of methionine metabolism, leading to significant systemic toxicities, particularly within the vascular, skeletal, and ocular systems. Most patients require lifelong dietary therapy with severe restriction of natural protein to minimize methionine intake, and many patients still struggle to maintain healthy homocysteine levels. Since eliminating methionine from the diet reduces homocysteine levels, we hypothesized that an enzyme that can degrade methionine within the gastrointestinal (GI) tract could help HCU patients maintain healthy levels while easing natural protein restrictions. We describe the preclinical development of CDX-6512, a methionine gamma lyase (MGL) enzyme that was engineered for stability and activity within the GI tract for oral administration to locally degrade methionine. CDX-6512 is stable to low pH and intestinal proteases, enabling it to survive the harsh GI environment without enteric coating and to degrade methionine freed from dietary protein within the small intestine. Administering CDX-6512 to healthy non-human primates following a high protein meal led to a dose-dependent suppression of plasma methionine. In Tg-I278T Cbs-/- mice, an animal model that recapitulates aspects of HCU disease including highly elevated serum homocysteine levels, oral dosing of CDX-6512 after a high protein meal led to suppression in serum levels of both methionine and homocysteine. When animals received a daily dose of CDX-6512 with a high protein meal for two weeks, the Tg-I278T Cbs-/- mice maintained baseline homocysteine levels, whereas homocysteine levels in untreated animals increased by 39%. These preclinical data demonstrate the potential of CDX-6512 as an oral enzyme therapy for HCU.


Homocystinuria , Humans , Mice , Animals , Homocystinuria/drug therapy , Homocystinuria/genetics , Methionine/metabolism , Homocysteine , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Racemethionine , Gastrointestinal Tract/metabolism
...